Как сформировать прогноз спроса и не сделать грубых ошибок


15795
Фото © Shutterstock
Фото © Shutterstock
Ефимов Александр
Руководитель направления розничной торговли компании SAS Россия-СНГ, Москва
  • 
Как сформировать прогноз спроса и не сделать грубых ошибок

  • Почему прогнозы спроса оказываются неточными
  • Как выстроила процесс прогнозирования спроса компания Nestle

Руководители розничных и дистрибьюторских компаний часто не удовлетворены объемом продаж, а также избытком или дефицитом товарных позиций. Отправная точка для изменения ситуации – прогнозирование спроса. Чем прогноз точнее, тем меньше будет на складе запасов непродаваемых товаров, востребованные же всегда будут в наличии. Кроме того, компания сможет вовремя вводить в ассортимент новые товары и убирать устаревшие, устанавливать конкурентоспособные розничные цены и оптимизировать цепочку поставки. 


Как формируется прогноз спроса

Все данные о фактических продажах, проведенных и планируемых маркетинговых акциях, изменениях розничных цен и других событиях нужно проанализировать. Самый простой инструмент для этого – программа Excel. Тем самым компания получит статистические прогнозы спроса. Далее их выборочно корректирует аналитик и передает на согласование соответствующим подразделениям: отделам продаж, закупок, маркетинга и др. Итоговый прогноз утверждает руководство компании.

Формирование прозноза спроса

1.  Данные Сведения о продажах, остатках, поставках, прочих движениях, а также о маркетинговых акциях и других внешних событиях.
2. Инструмент Программа, с помощью которой можно сформировать статистический прогноз спроса (в нашем случае Excel)
3. Статистический прогноз Прогноз, сформированный при помощи инструмента прогнозирования спроса
4. Скорректированный прогноз Ручная корректировка статистического прогноза аналитиоки или специалистом по планированию
5.  Согласованный прогноз Ручная корректировка и согласование итогового прогноза между департаментами (продажи, маркетинга и пр.)
6. Утвержденный прогноз Утверждение итогового прогноза ответственным менеджером и передача отделам для выполнения.

Почему появляются неточные прогнозы
 спроса

Прогнозы компании оказываются неточными по четырем причинам:

  • вариативность спроса;
  • субъективность корректировок;
  • неопытность аналитиков;
  • недостаточная функциональность программного обеспечения. 


Вариативность спроса

Например, спрос на сотовые телефоны или одежду чаще всего импульсивен, а значит, неравномерен в разных магазинах – объем продаж зависит от того, насколько умело продвигается товар. Соответственно, при планировании надо учитывать, какие рекламные акции будет проводить магазин, и корректировать прогноз в зависимости от ожидаемых результатов. Иное дело хлеб – этот товар пользуется спросом в любой ситуации. Поэтому достаточно рассчитать статистический прогноз, корректировки не требуются.


Субъективность корректировок

Нередко в компанию приходит эксперт с большим опытом и «на глаз» определяет спрос. Однако такого рода «экспертные» оценки зачастую ошибочны. Например, в американской компании по продаже электронной техники RadioShack обнаружили, что в 70% случаев прогноз, скорректированный специалистом, оказывается менее точным, чем статистический прогноз, полученный на основе средних значений еженедельных продаж за последние пять недель (так называемый прогноз по скользящим средним). 


Кроме того, разные подразделения, которые корректируют прогнозы, часто действуют несогласованно или намеренно искажают цифры, чтобы затем иметь возможность переложить ответственность друг на друга. Классический пример – противоборство отделов продаж и закупок. Первые утверждают, что низкие продажи обусловлены отсутствием товара на складе, а вторые заявляют, что не закупают товар, поскольку менеджеры все равно не могут его продать. Соответственно, департамент продаж старается завысить прогноз, а департамент закупок, наоборот, занизить. Это не лучшим образом сказывается на точности прогнозов.


Неопытность аналитиков

По моим наблюдениям, аналитики или специалисты по планированию делают менее точные корректировки, чем категорийные менеджеры, которые отлично знают товар. Кроме того, ошибки в прогнозах нередко возникают по банальной причине, когда аналитик не владеет в должной мере техниками прогнозирования. Как показало исследование компании Fildes & Goodwin, ручные изменения прогнозных значений на небольшие величины не приводят к существенному повышению точности прогноза, а в ряде случаев даже снижают ее. В исследовании участвовали четыре компании, деятельность которых связана с цепочками поставок; они корректировали вручную до 75% своих статистических прогнозов1.


Неточность программных инструментов

Существует множество видов спроса. Он может быть устойчивым сезонным, устойчивым несезонным, неустойчивым сезонным, неустойчивым несезонным и прерывистым. Отдельно выделяется спрос на товары с коротким жизненным циклом. Помимо всего этого, на спрос влияет множество внешних событий: маркетинговые акции, изменение розничных цен, смена товарных линеек, активность конкурентов и пр. Сочетания этих событий могут быть как взаимодополняющими, так и взаимоисключающими. Не все программные инструменты способны учитывать эти нюансы при формировании статистических прогнозов, и отсюда следуют неточности.

  • Удобное прогнозирование продаж поможет сделать программа автоматизации бизнеса Класс365 Подробнее »»

7 советов, как добиться точности прогнозирования


Определите природу спроса
. Универсального алгоритма, который бы гарантировал точные прогнозы для всех видов товаров, не существует. Но есть важное правило – первым делом нужно понять природу спроса на товар: он импульсивный или естественный? Определив это, вам будет проще подобрать правильные методы для управления продажами. 


Используйте эталонный прогноз спроса
. Вопрос, насколько точен статистический прогноз, возникает уже в самом начале процесса прогнозирования. Чтобы понять, эффективны ли меры по корректировке прогноза, необходимо иметь эталонный прогноз для сравнения. Тогда статистический прогноз, допустим, на завтра сравнивается с эталоном. Таким прогнозом может служить скользящее среднее значение, например, за последние семь дней. Вы можете выбрать и другой эталон – главное, руководствоваться следующими принципами: 
 

  • построение эталонного прогноза не должно отнимать много времени;
  • алгоритм должен быть очень простым и подходить для всех видов спроса. Например, он должен одинаково стабильно прогнозировать спрос на товары с циклом продаж в одну неделю и на товары с циклом продаж в несколько лет. 


Результаты дальнейших корректировок статистического прогноза необходимо сравнивать именно с эталонным. Введение эталонного прогноза изменит процесс предсказания будущего спроса (см. рис. 2).


Как сформировать прогноз спроса и не сделать грубых ошибок


Устанавливайте адекватные цели прогнозирования
 спроса. Вот пример неверно сформулированной цели: точность прогноза должна быть не менее 80% для всех товаров. Правильнее сформулировать цель следующим образом: точность итогового прогноза должна быть выше точности эталонного. Или так: точность итогового прогноза должна быть выше точности используемого на текущий момент.


Казалось бы, в последних формулировках цель выглядит более размытой, но зато она позволяет учитывать особенности спроса на разные товары. Например, в подразделении по продаже мобильных телефонов компании Mobistar долгое время не могли преодолеть планку в 30% по точности прогнозов ввиду редких и импульсивных продаж товаров. Развертывание системы статистического прогнозирования временных рядов позволило повысить точность прогнозов до 50%. Дальнейшее выстраивание процесса согласования итогового прогноза с экспертами из других отделов помогло поднять точность прогнозов до 60%. Текущий уровень точности прогнозов составляет порядка 70%, и этот результат был достигнут за счет повышения качества данных2.


Если же цели слабо связаны с реальностью, сотрудники начинают подстраивать прогнозы под имеющиеся данные. Это лишает смысла всю работу по прогнозированию.

Не копируйте цели конкурентов
. Часто при прогнозировании спроса розничные сети смотрят на конкурентов. Однако это не всегда оправданно. Цели по точности прогнозов должны учитывать размеры компании, специфику ее процессов, географическое положение, широту ассортимента и т. д. То есть региональной розничной сети небольших или средних размеров не следует ориентироваться на точность прогнозирования федеральной сети из списка топ-10. Вместе с тем у более крупных конкурентов полезно позаимствовать сведения об организации бизнес-процессов и их автоматизации. 


Занимайтесь товарами, которые приносят максимальную прибыль, но показывают самую низкую точность прогнозов продаж
. Если Вам удастся хотя бы немного повысить точность прогноза продаж товаров, приносящих основную маржу, Вы получите существенный финансовый эффект за счет сокращения издержек. Если же Вы повысите, пусть даже до 100%, точность прогноза продаж на товары с небольшой выручкой, эффект будет значительно меньше. Если же есть два товара, сопоставимые по выручке, разумнее сосредоточить усилия на повышении точности прогноза продаж того товара, у которого она ниже. Дело в том, что если точность прогноза уже высокая, то ее дальнейшее улучшение потребует несравнимо больших усилий. Если же первоначальная точность прогноза низкая, то ее проще повысить и, значит, проще получить прирост прибыли. 


Контролируйте качество поступающих данных
. Использование в качестве отправной точки эталонного прогноза и установка адекватных целей еще не гарантия получения точных итоговых прогнозов. Важно контролировать качество поступающих данных. Например, фактические сведения о реализации могут не отражать действительной картины, поскольку продаж могло не быть не из-за отсутствия спроса, а, например, из-за нехватки товара на складе. В этом случае используйте среднее значение продаж в периоды отсутствия дефицита. Причем не стоит стараться восстанавливать спрос идеально точно – для прогнозирования нет принципиальной разницы, был ли реальный спрос вчера равен пяти или семи единицам товара. Достаточно знать, что в среднем спрос составлял шесть единиц. 


Автоматизируйте процессы, влияющие на спрос
. Многие компании не собирают информацию о результатах проведенных маркетинговых акций и не оценивают их эффективность. Они уверены, что любая рекламная кампания увеличивает продажи, но это не так. Аналогично многие не отслеживают историю ценообразования и т. д. Важно выстроить процесс формирования прогноза спроса для каждой товарной группы, а лучше – для каждого товара. И здесь требуется программное обеспечение. Однако, выбирая его, обращайте внимание на возможности для анализа влияния внешних событий на спрос, таких как праздники, различные промоакции, изменение розничных цен и т. д. Откажитесь от ручной корректировки статистического прогноза по тем товарным категориям, по которым экспертное мнение специалиста не дает стабильного улучшения точности итогового прогноза.


Прогнозирование спроса в действии: опыт компании Nestle


В качестве примера расскажу о проекте компании Nestle по построению процесса прогнозирования спроса. Он был выполнен совместно со специалистами компании SAS. Небольшая справка: Nestle производит продукты питания, работает в 469 регионах в 86 странах мира, годовой оборот – 90 млрд швейцарских франков.


В компании особое значение для формирования прогнозов спроса придают категории товаров, именуемой «безумные быки», – это товары одновременно с высоким объемом продаж и вариативностью спроса. К «безумным быкам» можно отнести, например, кофе марки Nescafe. Для этого продукта характерен устойчивый спрос, однако, чтобы объем продаж не падал, постоянно проводят стимулирующие промоакции.


В Nestle пришли к выводу, что использование лишь статистического прогноза, равно как и только экспертного опыта специалиста по планированию, не дает должных результатов. Руководство поставило задачу выстроить пошаговый процесс формирования прогноза спроса, чтобы повысить его точность. Действовали следующим образом:


1. Сформировали эталонный прогноз – он был получен при помощи метода усреднения значений продаж.


2. Создали статистический прогноз, затем аналитик скорректировал данные, передал на рассмотрение другим отделам. Те внесли корректировки, вернули прогноз, руководитель утвердил. Кстати, точность прогноза рассчитывалась по следующей формуле: 
Точность прогноза спроса = 1 – |Прогноз – Факт| : Прогноз.
 

Компания Nestle не открывает точных цифр, поэтому рассмотрим условный пример. Допустим, сегодня 22-е число. Прогноз спроса, сделанный 20-го числа на 21-е, равен 10 единицам товара (банки кофе Nescafe). Фактические продажи за 21-е число составили 8 единиц. Точность прогноза, согласно формуле, которую используют в компании Nestle, составит 80% (1 – |10 – 8| : 10). 


3. Чтобы достичь высокой точности прогноза спроса, были сформулированы гипотезы возможных событий, которые могут повлиять на спрос: праздники, перенос выходных дней, структурные сдвиги продаж (например, обусловленные кризисом), промоакции. Эксперты оценивали влияние каждой гипотезы на спрос и затем сравнивали с эталоном. Если это повышало точность прогнозов, гипотезу учитывали в процессе прогнозирования.

Приведу условный пример (к сожалению, специалисты компании Nestle не предоставили точных данных, что именно они делали в рамках процесса экспертной корректировки). В компании узнали, что конкурент неожиданно снизил цены на 1%. Опыт эксперта показывает, что такие действия приведут к падению продаж на 3%. Значит, необходимо уменьшить величину прогноза на эти 3%.


Вернемся к опыту компании Nestle. Первоначально сформированный статистический прогноз спроса для «безумных быков» показал точность 55,2%. Затем его подвергли процессу экспертной корректировки, что повысило точность итогового прогноза до 82,4%. Кроме того, компания повысила точность прогнозов и по другим категориям товаров. Все это позволило высвободить время маркетологов и специалистов по планированию. Они стали уделять больше внимания стабильно прибыльным товарам, сконцентрировав свои усилия на сложной продукции (для поддержания высокого спроса на которую требуются постоянные рекламные акции и пр.). Работа с товарами с низкими продажами ведется по остаточному принципу.

Формирование прогноза спроса

Сегмент Точность статистического прогноза спроса, % Точность прогноза после корректировки экспертами, %
«Лошади» - товары с высокими продажами и низкой вариативность 92,1 92,7
«Зайцы» - товары с низкими продажами и высокой вариативностью 56,3 55,5
«Безумные быки» - товары с высокими продажами и высокой вариативностью, например кофе марки Nescafe 55,2 82,4
«Мулы» - товары с низкими продажами и низкой вариантивностью 90,9 91,2

В каждой компании свои примеры, Nestle раскрывает информацию только для сегмента «безумные быки»[i] – напиток Nescafe. Эта таблица дает директорам повод задуматься и попытаться составить аналогичную для своего ассортимента. Ведь Nescafe в «Пятерочке» может оказаться совсем в другой категории, нежели Nescafe в «Азбуке Вкуса».

[i] Доклад Marcel Baumgartner «Global Lead for Demand Planning Performance and Statistical Forecasting, Nestle» на SAS Forum Switzerland в мае 2013 года

Как сформировать прогноз спроса и не сделать грубых ошибок


Копирование материала без согласования допустимо при наличии dofollow-ссылки на эту страницу

Читайте в ближайших номерах журнала "Генеральный Директор"
    Читать>>>


    Ваша персональная подборка

      Подписка на статьи

      Чтобы не пропустить ни одной важной или интересной статьи, подпишитесь на рассылку. Это бесплатно.

      Рекомендации по теме

      Школа руководителя

      Школа руководителя

      Проверьте свои знания и приобретите новые

      Записаться

      Самое выгодное предложение

      Самое выгодное предложение

      Станьте читателем уже сейчас

      Живое общение с редакцией

      А еще...

      

      Оформите подписку, чтобы не пропустить свежие новости

      150 000 + ваших коллег следят за нашими новостями





      © 2011–2016 ООО «Актион управление и финансы»

      Журнал «Генеральный Директор» –
      профессиональный журнал руководителя

      Зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) Свидетельство о регистрации ПИ № ФС77-62404 от 27.07.2015

      Политика обработки персональных данных

      Все права защищены. Полное или частичное копирование любых материалов сайта возможно только с письменного разрешения редакции журнала «Генеральный Директор». Нарушение авторских прав влечет за собой ответственность в соответствии с законодательством РФ.

      
      • Мы в соцсетях
      Сайт использует файлы cookie. Они позволяют узнавать вас и получать информацию о вашем пользовательском опыте. Это нужно, чтобы улучшать сайт. Если согласны, продолжайте пользоваться сайтом. Если нет – установите специальные настройки в браузере или обратитесь в техподдержку.
      Зарегистрируйтесь на сайте и продолжите чтение! Это бесплатно и займет всего минуту!

      Вы сможете бесплатно продолжить чтение этой статьи, а также получите доступ к сервисам на сайте для зарегистрированных пользователей:

      • методики, проверенные на практике
      • библиотека Генерального Директора
      • правовая база
      • полезные подборки статей
      • участие и просмотр вебинаров

      У меня есть пароль
      напомнить
      Пароль отправлен на почту
      Ввести
      Я тут впервые
      И получить доступ на сайт Займет минуту!
      Введите эл. почту или логин
      Неверный логин или пароль
      Неверный пароль
      Введите пароль